Search results

Search for "grain boundary" in Full Text gives 61 result(s) in Beilstein Journal of Nanotechnology.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • values. For larger strains, mechanisms such as grain rotation and the formation of nanocracks might contribute to the piezoresistive behavior in nanocrystalline graphene. Keywords: grain boundary; nanocrystalline graphene; strain sensor; Raman; tunneling and destruction; Introduction Flexible strain
PDF
Album
Full Research Paper
Published 08 Apr 2024

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
  • since the dielectric strength of a grain is lower than a grain boundary, the dielectric permittivity decreases with decreasing grain size [48]. Moreover, the interaction between plasmonic nanoparticles and substrates on which they are deposited cannot be ignored. The polarization of charges in the
PDF
Album
Review
Published 27 Mar 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • [15][16]. - Detection of ultrahigh frequency radiation by new devices: Based on Josephson junctions with frequencies of 72–265 GHz using the Josephson grain boundary junction fabricated in YBaCuO films [17] and broad-band detectors based on YBaCuO Josephson junctions fabricated on ZrYO bicrystals with
PDF
Editorial
Published 10 Jan 2023

A broadband detector based on series YBCO grain boundary Josephson junctions

  • Egor I. Glushkov,
  • Alexander V. Chiginev,
  • Leonid S. Kuzmin and
  • Leonid S. Revin

Beilstein J. Nanotechnol. 2022, 13, 325–333, doi:10.3762/bjnano.13.27

Graphical Abstract
  • Technology, SE-41296 Gothenburg, Sweden 10.3762/bjnano.13.27 Abstract Modeling of a broadband receiving system based on a meander series of Josephson YBaCuO grain boundary junctions integrated into a log-periodic antenna was carried out. The electromagnetic properties of the system, namely amplitude
  • use of a meander-type microstrip since, for the formation of a weak link, it is necessary for the superconducting film to cross the grain boundary. In the first case implemented in [3], the length of the meander is minimal (Figure 3a). To minimize this length, the two parts of the antenna are
  • absorbed power in the port for the three antenna geometries in Figure 1. Geometry of log-periodic antennas with a meander series of Josephson YBaCuO grain boundary junctions. (a) Displaced geometry with three ports; (b) unchanged antenna with long meander and three ports; (c, d) antennas with five and
PDF
Album
Full Research Paper
Published 28 Mar 2022

Measurement of polarization effects in dual-phase ceria-based oxygen permeation membranes using Kelvin probe force microscopy

  • Kerstin Neuhaus,
  • Christina Schmidt,
  • Liudmila Fischer,
  • Wilhelm Albert Meulenberg,
  • Ke Ran,
  • Joachim Mayer and
  • Stefan Baumann

Beilstein J. Nanotechnol. 2021, 12, 1380–1391, doi:10.3762/bjnano.12.102

Graphical Abstract
  • time dependence was shown to vary with dopant concentration (e.g., abundance of oxygen vacancies in ceria) and also depends on the ratio of grain boundary/grain bulk [22][23][24][25]. Single ceria grains in a mixed ion/electron-conductive composite have so far not been addressed by AFM-based
  • time constant for this process. Since the opposite reaction with a second potential gradient observed after polarization with +1 V as well as −1 V was found only when the polarization occurred directly at or on a grain boundary between ceria and electron-conducting material, one possible explanation is
  • expected to be in the spinel region rather than on another site of the ceria phase. Another possible explanation would be that enhanced charge transport by electrons occurs along the grain boundary. This has already been confirmed experimentally for similar composite materials [33]. In this case, an
PDF
Album
Full Research Paper
Published 15 Dec 2021

Nonmonotonous temperature dependence of Shapiro steps in YBCO grain boundary junctions

  • Leonid S. Revin,
  • Dmitriy V. Masterov,
  • Alexey E. Parafin,
  • Sergey A. Pavlov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2021, 12, 1279–1285, doi:10.3762/bjnano.12.95

Graphical Abstract
  • University of Nizhny Novgorod, Nizhny Novgorod, Russia 10.3762/bjnano.12.95 Abstract The amplitudes of the first Shapiro steps for an external signal with frequencies of 72 and 265 GHz are measured as function of the temperature from 20 to 80 K for a 6 μm Josephson grain boundary junction fabricated by
  • this paper, we investigate the temperature dependence of the first Shapiro step amplitude for an external signal with frequencies of 72 and 265 GHz acting on YBa2Cu3O7−δ 6 μm Josephson grain boundary junction. The observed non-monotonous behavior of the step height in the limit of low signal power is
  • discussed, and the measurement results are compared with the results of numerical calculations. Experimental Setup and Numerical Model The samples of grain boundary Josephson junctions were fabricated by on-axis dc magnetron sputtering [28][29][30][31] of YBa2Cu3O7−δ (YBCO) film on the surface of 24°[001
PDF
Album
Full Research Paper
Published 23 Nov 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • p-type), fermi level control theory, and grain boundary barrier control theory models have been proposed to understand the fundamentals of sensing mechanism [31][36][87][88]. The changes in electrical resistance of materials from a microscopic viewpoint are addressed by electronic and chemical
  • this could be due to grain boundary resistance, which controls the charge transport and thereby nullifies the effect of fractal morphology. Further, the possibility of gas molecules to diffuse in the material via surface diffusion, Knudsen diffusion (radius of pores in the range of 1–100 nm) and
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • area. Most areas on the sample returned up to 80% zero solutions under the same conditions due to the roughness of the surface sample (see below Figure 7). The inverse pole figure (IPF X) is shown in Figure 3d. The band contrast and grain boundary map overlay is shown in Figure 3e. A statistical
  • . While the number of LAGB with 17% in the grain boundary map (Figure 4k) is still slightly larger than that for the control experiment, it is lower than the observed number for electropolishing. The level of misorientation in the KAM maps (Figure 4m) is significantly reduced in comparison to the
  • different times. This result is in good agreement with the observed dark patch growth in the ion channeling images. The kernel average misorientation map and grain boundary map overlay (Figure 7c) shows a higher local misorientation and low-angle grain boundaries within the topographically higher regions
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • shear stress and strain. In terms of the shear strength, the Hall–Petch relationship confirms that the strength of the composite specimens will increase with a decrease of the grain size [43][44]. Because of grain boundary strengthening, plastic deformation hardly occurs during the loading process [43
  • ][44]. However, when the grain size is less than 10 nm, grain boundary sliding drives the movement of atoms and leads the specimen to deform and become soft. Therefore, the strength of the specimens will decrease as the grain size decreases [45]. Although the 9.43 nm grain size may slightly affect the
  • grain boundary behavior due to size effects, the results do not deviate. The shear modulus of the composite specimens with six different grain sizes is calculated, as shown in Figure 15. The values of the shear modulus decrease with a decrease of the grain size, which is consistent with the above
PDF
Album
Full Research Paper
Published 12 Aug 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • . Vacancies could also increase local tensile strain in graphene similarly as the nanowire substrate. Therefore, high differences in NW height and low density of supporting points decrease the observed density of defects and highlight grain boundary defects omnipresent in the graphene layers. The contact with
PDF
Album
Full Research Paper
Published 22 Jun 2021

Oxidation of Au/Ag films by oxygen plasma: phase separation and generation of nanoporosity

  • Abdel-Aziz El Mel,
  • Said A. Mansour,
  • Mujaheed Pasha,
  • Atef Zekri,
  • Janarthanan Ponraj,
  • Akshath Shetty and
  • Yousef Haik

Beilstein J. Nanotechnol. 2020, 11, 1608–1614, doi:10.3762/bjnano.11.143

Graphical Abstract
  • between gold and silver (Figure 7). HAADF and EDS-STEM image analysis revealed that the column was mainly constituted of gold surrounded with silver. This suggests that the migration of silver to the upper surface might have resulted from a grain-boundary diffusion mechanism. Indeed, in thin films silver
  • diffusion happens either in volume (bulk diffusion) or through a grain boundary mechanism (short circuit diffusion) [22]. The latter is expected to be dominant as it exhibits a lower activation energy [23]. The following mechanism was proposed to explain the different steps of the oxidation process (Figure
PDF
Album
Full Research Paper
Published 22 Oct 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • with an approximate average size of 100 nm. Assuming the neutrality of the Au/Te contacts, the electrical conductivity of the film is mainly controlled by the bulk, surface and grain boundary resistances. On the other hand, due to the peculiarities of chalcogens and chalcogenide materials [1][30], a
  • region enriched in holes is formed at the surface and at grain boundary and intragrain regions. Therefore, when the films are exposed to NO2, the surface and grain boundaries are the most affected by the gas reaction. Although the gas sensing occurs due to the variation in hole density at the enriched
  • region (surface and grain boundary), in the presence of gaseous media, the bulk is responsible for the observed increase in the baseline current when the temperature increases (Figure 4). Elevated temperatures result in the decrease of the gas (NO2) sensitivity, as shown in Figure 6B. At the same time
PDF
Album
Full Research Paper
Published 10 Jul 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • . Generally, the inclusion of low-resistivity metal thin films, coupled with a reduction in grain boundary scattering after annealing, is responsible for the large reduction in both sheet resistance and resistivity. Moreover, the optoelectronic properties of the IAAI films are better compared to those in the
PDF
Album
Full Research Paper
Published 27 Apr 2020

Electromigration-induced directional steps towards the formation of single atomic Ag contacts

  • Atasi Chatterjee,
  • Christoph Tegenkamp and
  • Herbert Pfnür

Beilstein J. Nanotechnol. 2020, 11, 680–687, doi:10.3762/bjnano.11.55

Graphical Abstract
  • the number of grains at the centre to one [28]. In this case, the current density is clearly highest at only one grain boundary so that the thinning process happens mainly there, as demonstrated by a comparison between Figure 1c and 1d. For these very narrow structures we obtained highly reproducible
  • on a single grain boundary, the directed material transport in EM will cause thinning of one grain while the other grain has to take up the material. Thus a strong asymmetry is introduced that is absent in the case of MCBJ experiments, so that these two types of experiments may yield different
PDF
Album
Full Research Paper
Published 22 Apr 2020

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • Wu et al. [27] in three-point bending tests. According to the authors, the grain orientation and grain-boundary arrangement within the NWs are responsible for their exceptional strength and brittle-like fracture. The slip directions in the grains intersect with the twin boundaries, resulting in
  • grain-boundary-hardened material that sacrifices ductility for strength [27]. In both the tensile and three-point bending tests, the NW is rigidly fixed at both ends. Even though the NW is bent in the three-point bending test, the deflection of the NW before failure is relatively small in comparison to
  • approximately 15 nN, and the dislocations continue to nucleate in the region close to the fixed end. Besides the existing twin boundaries, a deformation twin could also be observed (Figure 8iii). The interaction of continuously nucleated dislocations will form an amorphous layer, similar to a grain boundary
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Capillary force-induced superlattice variation atop a nanometer-wide graphene flake and its moiré origin studied by STM

  • Loji K. Thomas and
  • Michael Reichling

Beilstein J. Nanotechnol. 2019, 10, 804–810, doi:10.3762/bjnano.10.80

Graphical Abstract
  • grain orientations at a grain boundary, that a superlattice is a result of mechanical rotation of the top layer; however, no live change in the periodicity was reported [19]. The periodicity D of the resulting moiré pattern is given by Here θ represents the rotational angle between the lattices and d is
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • . The crystals are well separated from each other and are oriented randomly on the substrate. This exhibits a central grain boundary (GB) perpendicular to the elongation direction (marked with dotted line in Figure 2b,c) that is generally assigned to twinning. These crystals with well-defined hexagonal
  • such a way that hexagonal faces, that define the c-axis, are parallel to the substrate. In Figure 2e,f, the central grain boundary perpendicular to the elongation direction can be clearly seen and indicates that polymer-assisted growth on ITO did not affect the morphology of twin NCs but helps to align
PDF
Album
Full Research Paper
Published 24 Jan 2019

Interaction of Te and Se interlayers with Ag or Au nanofilms in sandwich structures

  • Arkadiusz Ciesielski,
  • Lukasz Skowronski,
  • Marek Trzcinski,
  • Ewa Górecka,
  • Wojciech Pacuski and
  • Tomasz Szoplik

Beilstein J. Nanotechnol. 2019, 10, 238–246, doi:10.3762/bjnano.10.22

Graphical Abstract
  • deposited on either Te or Se, additional plasmonic bands originating from grain boundary segregation or diffusion occur, while for the Au layer, such resonances were not pronounced. In the permittivity of both materials, the intensity of the interband transition peaks is strongly altered, possibly due to
  • adhesion of plasmonic metals to almost any ultrasmooth substrate. However, most of the aforementioned elements migrate inside the metal structure as a result of either grain boundary diffusion or segregation [20][21]. This deteriorates both the optical and electrical properties of the plasmonic layers. The
  • interstitial lattice sites accessible to the minority atom as well as higher coordination number. Therefore, a system in which minority atoms reside in such voids has a higher entropy S (and thus lower free enthalpy G) than a system in which they reside in a simple grain boundary. Therefore, the distribution
PDF
Album
Full Research Paper
Published 21 Jan 2019

Optimization of Mo/Cr bilayer back contacts for thin-film solar cells

  • Nima Khoshsirat,
  • Fawad Ali,
  • Vincent Tiing Tiong,
  • Mojtaba Amjadipour,
  • Hongxia Wang,
  • Mahnaz Shafiei and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2018, 9, 2700–2707, doi:10.3762/bjnano.9.252

Graphical Abstract
  • exhibit a dominant (110) orientation. Previous studies revealed that the (110) Mo crystal orientation can enhance the (220) and (204) CIGS and (112) CZTS orientations, which leads to a decrease of grain boundary recombination losses and series resistance in CIGS and CZTS thin-film solar cells [35][36
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2018

Lead-free hybrid perovskites for photovoltaics

  • Oleksandr Stroyuk

Beilstein J. Nanotechnol. 2018, 9, 2209–2235, doi:10.3762/bjnano.9.207

Graphical Abstract
  • grains with a minimized grain boundary area and surface defects seems to be of much lower significance for the Sn-based HPs, than for their lead-based counterparts. We can, therefore, expect a similar photovoltaic efficiency from micro- and nanometer Sn-HP crystals and try to affect the charge carrier
PDF
Album
Review
Published 21 Aug 2018

Direct AFM-based nanoscale mapping and tomography of open-circuit voltages for photovoltaics

  • Katherine Atamanuk,
  • Justin Luria and
  • Bryan D. Huey

Beilstein J. Nanotechnol. 2018, 9, 1802–1808, doi:10.3762/bjnano.9.171

Graphical Abstract
  • measured properties, for example with work function differences of molecular perovskites observed at specific facets [24] or grain boundary interfaces [2]. Topography commonly couples with conductive or photoconductive AFM contrast as well. Routines to test for such associations are therefore increasingly
  •  1, Figure S1 and [6] for current-shunting grain boundaries. Figure 2 and Figure 4 reveal a more consistent grain boundary response via the direct measurements. Therefore, although quasi-VOC* mapping is simple and efficient, spurious contrast mechanisms can mask the actual local VOC and corresponding
PDF
Album
Supp Info
Full Research Paper
Published 14 Jun 2018

Correlative electrochemical strain and scanning electron microscopy for local characterization of the solid state electrolyte Li1.3Al0.3Ti1.7(PO4)3

  • Nino Schön,
  • Deniz Cihan Gunduz,
  • Shicheng Yu,
  • Hermann Tempel,
  • Roland Schierholz and
  • Florian Hausen

Beilstein J. Nanotechnol. 2018, 9, 1564–1572, doi:10.3762/bjnano.9.148

Graphical Abstract
  • , as it can already be seen from the results of different lithium-ion conductivities for grain and grain boundary structures in comparison to the overall ionic conductivity, it is of utmost importance to understand the electrochemical and ion-transport properties of promising SSEs such as LATP at the
  • signal was found for grains consisting of LATP. Interestingly, the grain boundaries exhibit significantly smaller amplitudes comparable to that of aluminum phosphate in area 1. This is examined in more detail for the region of grain boundary marked by the arrow in Figure 2e. Figure 3 shows AFM topography
  • indicated in Figure 3a for topography and in Figure 3c for the ESM amplitude signal and shown in Figure 3b. From left to right three grains and correspondingly two grain boundaries can be identified in the topography image (Figure 3a). An overall height difference of about 8 nm for the left grain boundary
PDF
Album
Full Research Paper
Published 28 May 2018

Formation and development of nanometer-sized cybotactic clusters in bent-core nematic liquid crystalline compounds

  • Yuri P. Panarin,
  • Sithara P. Sreenilayam,
  • Jagdish K. Vij,
  • Anne Lehmann and
  • Carsten Tschierske

Beilstein J. Nanotechnol. 2018, 9, 1288–1296, doi:10.3762/bjnano.9.121

Graphical Abstract
  • spectroscopy. Dielectric spectroscopy is a complementary technique to XRD used to characterize different phases and structures of LC phases such as twist-grain boundary SmA (TGBA) [45], antiferroelectric liquid crystals (AFLCs) [46], de Vries [47][48][49], bent-core molecular systems [50][51], etc. Here we use
PDF
Album
Full Research Paper
Published 25 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • movement along the x–y-axis, and x, y, z-axis respectively. The ability to predict the properties of NMs determines the classification value of the NMs. The properties of NMs strongly depend on the grain boundaries, as mentioned in the “grain boundary engineering” concept in Gleiter's classification
  • . Therefore, the classical inner size effects, such as melting point reduction and diffusion enhancement, will be enhanced by grain boundary engineering. The classification by Pokropivny and Skorokhod proposed that the characteristics of NMs are attributed to the particle shape and dimensionality, as per the
  • “surface engineering” concept, and thereby class of NMs. Thus, these reasons focus on the engineering of particle shape and dimensionality along with grain boundary engineering to extend the application of NSMs [18]. Classification of nanomaterials based on their origin Apart from dimension and material
PDF
Album
Review
Published 03 Apr 2018

Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch

  • Alexej Bubnov,
  • Cyril Vacek,
  • Michał Czerwiński,
  • Terezia Vojtylová,
  • Wiktor Piecek and
  • Věra Hamplová

Beilstein J. Nanotechnol. 2018, 9, 333–341, doi:10.3762/bjnano.9.33

Graphical Abstract
  • twist grain boundary – TGBA* and TGBC* phases or cubic SmQ* phase and re-entrant orthogonal and tilted phases; (ii) the utilisation of the lactic unit as a precursor of chiral centre minimises the synthetic cost with respect to the most commonly used chiral precursors; (iii) the melting points in the
PDF
Album
Full Research Paper
Published 29 Jan 2018
Other Beilstein-Institut Open Science Activities